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Spectral Analysis via Quadratic Frequency-Smoothing
of Fourier-Transformed, Overlapped, Weighted Data Segments

Introduction

Spectral analysis techniques have received a great deal of attention in the past
(references 1-12), ranging from the original autocorrelation approach of Blackman-
Tukey (reference 2) to the more recent weighted, overlapped, segment-averaging
FFT approach (references 7-12). These two apparently disparate approaches are
shown here to be limiting special cases of a generalized framework for spectral
analysis; thus consideration of this general technique elucidates the fundamental
behavior and performance of a rather wide variety of spectral approaches and their
tradeoffs. This generalized framework has already been presented in references 13-
15, where a brief summary of some of the main features has been mentioned.
Additionally, some of the analytical results to be presented here were alluded to
there; however, none of the detailed derivations or quantitative results in this report
were given at that time.

There are two fundamental parameters that critically affect the performance of
any spectral estimation technique. They are the available record length, T, of the
stationary random process under investigation, and the effective frequency
resolution, B., of the technique under consideration. We would like to be able to
attain fine resolution (small Be) with short data lengths and storage (small T);
however, stable results (small fluctuations) are achievable only if the product TB, is
much larger than unity. The problems we address are how to make optimum use of
a given limited amount of data in order to realize a specified desired resolution with
maximum stability, and to determine what tradeoffs are available regarding win-
dowing and weighting at different stages of the spectral analysis procedure. It is
assumed that the reader is familiar with the tradeoffs presented in reference 9 for
the weighted, overlapped, segment-averaging FFT procedure.

The generalized framework for spectral analysis that is presented here is capable
of a wide variety of forms in addition to the Blackman-Tukey and FFT approaches
mentioned above. In order to compare these various forms with each other on a
reasonable basis, it is required that each analysis technique realize the same effective
resolution bandwidth, B., and that they all utilize the same data record length T.
Without these reasonable constraints, valid conclusions about relative per-
formances of different techniques are tentative at best. This insistence upon equal
effective frequency resolution necessitates a rather detailed investigation of the
effects of the weightings and windows employed in the generalized framework and
their allowed durations. The desirability of an overall effective window for spectral
analysis with low side lobes and good decay is achievable only through careful
choice of the combined weightings. The constraint upon the effective frequency
resolution naturally also shows up in the analysis of the variance of the spectral
estimation technique, as well as in its average value, leading to some numerical
analysis complications; nevertheless, it is believed to be the proper basis of com-
parison and is maintained throughout.
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The two major statistical parts of this report deal with the mean and the variance
of the spectral estimate. The result for the average value leads to the definition of
the effective window of the generalized spectral analysis technique, in terms of the
temporal and lag windows. The variance result incorporates, additionally, the
amount of overlap, the number of data pieces, and the ambiguity functions of the
temporal and lag windows; the complexity of the latter results debilitates easy in-
terpretation and it has been found necessary to resort to numerical evaluation of the
variance, for practical cases of interest.

2
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Ultimate Stability Attainable From a Given Record Length

Suppose a stationary (complex) data record x(t) of length T seconds is available,
and that we wish to estimate its power density spectrum* G(f) with an effective
frequency resolution of B, Hz, where Wo(f) is the narrowband window through
which the power density spectrum is to be observed. These two frequency-domain
quantities are related according tot

B -[fdf W(f )] 2
e fd IN 2 (1

This bandwidth measure, Be , is called the statistical bandwidth of Wo(f) in reference
5, page 265. The relation of effective bandwidth Be to half-power bandwidth Bh is
considered in appendix A; it is shown that for good windows, the ratio of the two
bandwidths is relatively independent of the exact window shape. Thus it is possible
to translate results to other bandwidth measures without significantly affecting the
essential quantitative aspects.

If we take the original data record and pass it through a narrowband linear
(complex) filter with power transfer function equal to the window, IH(f)12 = Wo(f),
and which is centered at a frequency, fo, of interest, we will have lost no relevant
information about the process in the frequency band of interest, because we have
filtered out information of no use. We can now estimate the power in the
narrowband filter output process and use it as a measure of the spectrum of the
input process in the neighborhood of frequency fo. See figure 1.

I 2 = Wol)
0

Be

0 f
0

Figure 1. Power Transfer Function of Narrowband Linear Filter

Let z(t) be the complex output process from the narrowband filter when excited
by the available T seconds of data x(t). If we ignore a starting transient (i.e.,
assuming T >> I/Be), the filter output power estimate in the band of width B, is

A 1 f 12
, = fT dt Iz(t)I = Jdt g(t) (2)

*For brevity, we use the term spectrum rather than autospectrum in this report.
lintegrals without limits are over the range of the nonzero integrands.

3



TR 6459

where gate function

g(t) fort T
0 otherwise (3)

The measure of stability we adopt for this estimator, and for the others to follow,

is the quality ratio defined as 2
A A2 A_

Var(P) = P - p

Av2 (P) 2K-
p (4)

where Av(l') and Var(1P) denote the average value and variance of l5 , respectively,

and an overbar denotes an ensemble average. We have average value

Av(P) = fdt g(t) zz(t)12  (zrt) l 2 = Rz(0)= fdf G(f) IH(f)I 2

-G(fo) fdf JH(f)j2 (5)

assuming that filter-input spectrum G(f) does not vary quickly with respect to Be , in

the neighborhood of fo. R,(T) is the correlation* of filter output process z(t).

Also, we have mean square value

A2 2 2P = jj dt du g(t) g(u) IZ(t)2 Iz(u) 1 (6)

Now in the interval T, filter output z(t) will be approximately a stationary zero-

mean, complex, analytic Gaussian process for small Be; filter H(f) has filtered out
zero and all negative frequencies. Then fourth-order moment

z(t)z*(t)z(u)z*(u) =-R 2 (0) + IRz(t - u) 2 (7)

There follows from (4) and (6),

Var(P) = ffdt du g(t)g(u) IRz(t - u)i 2 f dt 9 (u) IRz (T)

(8)

where gate-correlationt of function g(t) is

9g(r) f dt g(t)g(t - T)

*For brevity, we use the term correlation instead of autocorrelation in this report.
tFor stationary processes, we let R denote the ensemble-average correlation, whereas for aperiodic
nonrandom functions, we let + denote the integral correlation; see (5) and (9).

4
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Since the gate-correlation +g(T) extends over ±T, while process correlation R(r)
extends only over approximately ±3 /B , we have, via Parseval's theorem and for
TBe >> 1,

Var(P) - 0 (0) fd-IR (1 2 = f df G(f)

~f~ IH(f) 14 2 (f)e G 2(f ) fdf !H(f) 14  (0

The quality-ratio measure of stability is then, from (4), (5), (10), and (1),

1 fdfIH(f) 14  1 fdf W2 (f)

[1df IH(f) 1 212 [f df Wf) (e1

This is the limiting (smallest) value of Q for specified frequency resolution Be and
available record length T when TBe >> 1. No other spectral procedures can improve
on it; they can merely approximate it. As such, (11) is the benchmark against which
other procedures can be compared, under the condition that T and Be are equal to
those values for the various procedures under consideration.

The normalized quality ratio is defined as Q 0 TBe. Thus the normalized quality
ratio can never be smaller than unity, which value can only be approached for large
TBe through proper processing techniques.

ii

. ... . .. . ... .- __-



TR 6459

Description of Spectral Analysis Technique

We begin by defining a temporal weighting function w,(t) of finite duration L,;
that is,

W1 (t) # 0 only for ItI < L 1/2
1 (12)

As shown in figure 2, temporal weighting w,(t) is real, even, and peaked at the
origin. Although this presentation is couched in terms of continuous functions, we
shall show shortly that it includes discrete digital processing as a special case.

_ Ll12 0 t Lll2

Figure 2. Temporal Weighting w1(I)

The available data record is x(t) for 0 < t < T; this (complex) random process is
presumed second-order stationary in that observation interval. We shift the tem-
poral weighting by LI/2 + pS and multiply it by x(t) to generate the p-th piece of
weighted data:

/' L1

yM(t) x(t) wI  -P--pS for 0 < p < (13)-- -- (13)

Here p is an integer; if shift S < L, then yp(t) and yp+ (t) will overlap on the t-axis.

The first-stage power density spectral estimate at frequency f is obtained by
averaging the magnitude-squared value of the Fourier transform of data piece yp(t),
over a total of P pieces:

Gf) = P f dt exp(-i2nft) y for any f14)

This procedure is the same as that considered in reference 7 and in reference 9, eqs.
(2) and (3). Since x(t) is available only for 0 < t < T, we prevent the weighting in (13)
from extending beyond that interval; mathematically this means that we must have

L + (P- 1) S T1115)

=! 6
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An alternative interpretation of (14) is very illuminating. We define the inverse
Fourier transform of (14) as the first-stage (auto)correlation estimate; there follows
immediately at delay T,

RI( = fdf exp(i2irfT) M

p-1E fdt y (t - T) for all T(16)

p=o 
p

where we have allowed random processes x(t) and yp(t) to be complex. This is
recognized as the average of the sample correlations that can be formed at delay T,
from each of the P pieces of weighted data in (13). Since temporal weighting w (t) is
zero for ItI > L /2 according to (12), we see from (13) and (16) that

R (T) = 0 for ITI > ((17)

The parameter, r, is called the lag domain variable, because of the way it appears as
a delayed time in (16). Equation (16) (and those to follow) is true for all T. Both
sides of (16) are zero over most of the range of r; nevertheless, it is mathematically
convenient to employ the equality of both sides of (16) for all T in various trans-
formations below.

The second-stage power density spectral estimate is defined as a frequency-
smoothed version of the first-stage result:

A A

G = (f) W2 (f) fJdu G1 (U)h 2 (f - u) , (18)

where 0 denotes convolution. This is termed quadratic smoothing since it is done in
terms of power quantities rather than voltages. Equation (18) is the desired output
from the generalized spectral analysis technique considered here. W2(f) is called the
lag window, for reasons to be given below. The equivalent statement to (18) in the
lag domain is obtained by Fourier transforming (18); the second-stage correlation is

A. A A

R2 (T) f df exp(i2ffT) G2 (f) = RI(T) w2 (T) (19)

where we used (18) and (16) and defined the Fourier transform pair

W2(T) = fdf exp(i2nft) W2 (f) ,

W2 (f) = f dr exp(-i2nfT) w2 (T) (20)

w2(T) and W2(f) are both real, even, and peaked at their origins. Since W2(T) appears
multiplicatively in (19), it is called the lag weighting; its transform W2(f) is the lag
window. The convention adopted throughout this report is that multiplication by a
function in the t or T domains is called a weighting; the counterpart to this operation
in the Fourier transform domain (frequency f domain) is convolution and is called
windowing.

7
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We shall let lag weighting w2(r) be of duration 2L 2; that is,

w 2(r) = 0 for itI > L2  (21)

A typical plot is shown in figure 3; the reason for the apparent notational
discrepancy between the lengths in figures 2 and 3 will become clear when the lag-
domain counterpart of temporal weighting w,(t) is encountered later.

- 2 0 r L2

Figure 3. Lag Weighting w2(r)

We have already observed that A (T) is zero for ITI>L, in (17). Therefore, it
follows from (19) and (21) that

RR2 (t) = 0 for ITt > min (L 1 , L2 ) (22)

However, although we must have temporal length L1 < T (from (15) for P = 1), there
is no restriction on L2. We could have L2 larger than LI and T; this would simply
mean that we would be lag-weighting some zero estimates of A I(r) in (19) for the
larger values of Irl. Also there are no constraints such as realizeability on the lag
weighting or window.

For example, the special case of no quadratic frequency-smoothing corresponds i
to

W2 (f) = S(f), w2(T) = 1, L2 = for no smoothing,
(23)

for which (18) yields 6 2(f) = 61(f). Thus we have our standard first-stage spectral
estimate (14) as a limiting case of the generalized spectral analysis technique. On the
other hand, if lag window W2(f) were broad (small 12), there would be a significant
amount of smoothing taking place in the band about u = f in (18) where window W2
is non zero.

There is no inherent limitation on the relative sizes of L, and L2 as yet: L2 can be
chosen as large as desired, while L, is subject to the upper bound T. However, when
we specify the overall effective frequency resolution of the generalized technique, a
relation between L, and L2 will ensue.

8
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Another important special case of the generalized spectral analysis technique is
afforded by P = 1, w,(t) = 1 for Iti < L,/2, and L, = T. Then (16) and (13) indicate
that A. (r) is simply the sample correlation of the available data x(t) of length T,
while A 2(T) in (19) is a weighted version of A1(r) for ITI < L2. But this is precisely the
Blackman-Tukey approach described in reference 2; the choice of lag weighting
W2(T) and its length is fully discussed there. For example, if W2(T) = (T-ITI)-' for
TI < L2 < T, then A2(T) is an unbiased estimator for ITt < L2; see reference 2, page

11.

For P>l and general temporal weighting wl(t), lag weighting W2(T), and overlap,
a wide variety of processors is possible via the generalized framework set up above.
How should the two weightings be traded off against each other? Can the
deleterious effects of a poor or preselected temporal weighting be undone by proper
choice of lag weighting? Recall that none of these techniques can hope to better the
quality-ratio result (11), but hopefully, some can do as well, with less computational
effort and storage.

A related procedure to the one presented here has been given in references 16 and
17. However, neither incorporate overlapping, and the fundamental tradeoffs
between the temporal and lag weightings were not studied. Furthermore, the only
frequency-smoothing case considered was a rectangular boxcar, which severely
limits the potential of the technique; some advantages of the generalized technique
considered here will become apparent at a later stage. For the time being, we ob-
serve that side lobe control will be realized by a mixture of temporal weighting and
lag weighting (frequency smoothing), while stability will be achieved by a com-
bination of segment averaging and frequency smoothing (lag weighting).

Discrete-Time Processing

All the functions above have been tacitly assumed no worse than discontinuous;
see figures 2 and 3 for example. However, there is nothing in the above mathematics
which precludes impulsive behavior. For example, suppose the temporal weighting
is a sum of N1 equispaced impulses:

W1(t) = At Wlm 6(t - mAt) (
rA& (24)

where {wm} is a finite length, real sequence, symmetric about m=0; this corres-
ponds to discrete sampling of waveform x(t) at time spacing A1. The p-th piece of
weighted data is, from (13),

y Ct) = x(t) At X w 6(t -PS mA)
m

A Ypm 6 - - PS - mAt (25)

where weighted sample

Ypm Wimx(+ PS + M~t (26)

9
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The first-stage correlation estimate, (16), becomes

A A
R1() = At  E R-k 6(t - kAt) (27)

where the area of each impulse is given by

A 1' A (p)

Rk= P k (28)

and
(p) At Y Yy

i pm-k (29)

The last quantity is the sample correlation of the p-th set of samples, and Alk is their
average over the total of P pieces.

The first-stage spectral estimate is the Fourier transform of (27) as usual:

A A
G MR1k exp(-i21rfkAt) (30)

k

which is finite for all f and is of period I/At in f. An alternative expression is
available by substitution of (25) in (14):

G 1 Atm Ypm exp(-i27rfmAt) 2

P=O I M M(31)

These two expressions hold for arbitrary f; either one can be used to obtain the
first-stage spectral estimate. If we restrict our calculations of interest to multiples of
some frequency increment AF, (3 1), for example, specializes to

A1 P-i )2G1 (qA F) = T At F y pm exp(-i2(3mqAt2AF)2
P=O M(32)

where q is an integer. At this point, there needn't be any relation between At and AF;
we can calculate the spectral estimate at any frequencies we please. However, a
favorite choice for computational purposes is to choose frequency increment

A 1
AF N , N = power of 2 , (33)

to get the special digital processing result

A 
"1 1  I  At ypm exp(-i2nmq/N) 

(2

0p=O (34)

10
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which is recognized as the familiar power average of N-point FFTs of weighted data
sequences. All the impulsive functions in (24)-(27) have dropped out of first-stage
spectral estimates (30)-(34).

The temporal window associated with impulsive weighting (24) is its Fourier

transform

WI(f) = At F Wm exp(i21rfmA)

m (35)

Having picked an impulsive temporal weighting w,(t), we are still free to select the
lag weighting or lag window as we please. For example, for any lag weighting
function w2(r), (19) and (27) yield second-stage correlation estimate

A 2 r ) 2 A kt-k~
R2W )= At F1 w2(kAt) R k S(T- kAt ) -At k R2k ((3 6 kAt  )

k k (36)

The corresponding second-stage spectral estimate is the Fourier transform

G2M = At 2 (kAt) R 1k exp(i2tfkAt) = At Fk R
2k exp('i2wfkAt)

k k
(37)

which is everywhere finite and has period 1 /A, in f. Evaluation of (37) can therefore
be confined to If I < (2A,)- 1.

These results apply for general lag weighting. A specific choice is the lag window
with N2 equispaced nonzero impulses:

W2(f) = Af E W2n 6(f - n(f)
n (38)

Frequency spacing Af need not be related to time spacing A, in (24), nor to frequency
increment AF used in the frequency and FFT calculations above in (32)-(34). Also
there are no relations between the real symmetric sets of numbers {wl,} in (24) and
{W2n} in (38). Substitution of (38) in (18) yields for the second-stage spectral
estimate

A A
G2(f) =Af W2  G (f - nAf)

n (39)

which is a local average (of the first-stage estimates) in the band about the
frequency, f, of interest. Equation (39) is a discrete, quadratic, frequency-
smoothing operation. In fact, (39) holds for lag window (38) and any temporal
weighting wl(t); it is not limited to the discrete-time form (24).

If we limit our calculations of 4(f) to multiples of frequency increment AF as in
(32), then (39) yields

A A
G2(qAF) = Af E W2n Gj(qAF - nAf) ;

n (40)

11{
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we can use (30) for 4 on the right-hand side. Finally, if we take frequency in-
crement (33) and frequency spacing Af = (MA,)-', where integer M is a submultiple
of Nand MAt is of the order of 2L,, the FFT results of (34) can be employed in (40).
More will be said later on the choice of frequency spacing Af.

The variety of forms available at different stages of the data processing illustrates
a great deal of flexibility in exactly how the available data x(t) is processed. For
example, one might first evaluate 4 via FFT procedure (34). Then, since (30) can be
expressed as

ARk exp(-i2nkq/N) (
k (41)

it follows that the complete nonzero portion of correlation sequence {AIk} is

recoverable from the set of numbers {(6(-q )} N- I if N>2N 1-I, where N, is the

number of nonzero weights {Wlk} in (24) (see reference 18). On the other hand, for
N<2NI-l, the inverse FFT of {61(-q-)}0-' would yield Al]k only for Iki I N-N
(reference 18, eq. (15)); thus the central values of A Ik are recoverable from 61. Then
second-stage correlation estimate

A A
R2k = w2 (kAt) Rlk (42)

follows from (36), and the final spectral estimate follows from (37). The lag
weighting samples in (42) are arbitrary; thus this is a very general procedure for
obtaining estimate 6 2(f) at any f.

The relations in this subsection hold for arbitrary values of T, f, and q. However,
the functions of T are impulsive, and are zero outside limited ranges, while the
functions of f and q are periodic. These properties should be utilized in any com-
puter processing technique employing these forms. Some further useful properties
and interrelationships of the sampled lag weightings and lag windows are presented
in appendix B.

12
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Average Value of Spectral Estimate
We now return to the general situation for both the temporal and the lag

weightings; that is, we do not presume discrete sampling in time or discrete
smoothing in frequency. From (16) and (13), the mean value of the first-stage
correlation estimate is

Av{RI(T)} = f fdt xt)x*(t - ) w ( - -t ps)

I  - L- pS= X ) x(t)i*(t - t) l(T) R () 1 (t) (43)

where R(T) is the true correlation of stationary process x(t), and where

1(T) = fdt w1(t) w1 (t - )

will be called the correlation of real temporal weighting w,(t); see the footnote to
(9). We have not presumed process x(t) Gaussian; relation (43) holds for any
stationary process x(t).

Since the first-stage spectral estimate 6 (f) is a linear operation (Fourier trans-
form) of A t(T), the mean value of 6 1(f) is the Fourier transform of (43); that is,

A
AV(G 1 Mf) =JdT exp(-i27rfT) R(T) * 1 (T)

2 ldu GMu) 2= G(f) 8 W1( ) W1 (f - u) , (45)

where G(f) is the true spectrum of x(t), i.e., Fourier transform of R(T), and we have
Fourier transformed (44) by interchanging integrals and using temporal window

WI( 00 f dt exp(-i2ffft) wl1 M (46)

The convolution result in (45) is a familiar one for the standard FFT processing of
weighted, overlapped data segments; see reference 9, eq. (5), for example. Window
W,(f) is real and even about f= 0, since weighting w,(t) is real and even about t =0.

The mean value of the second-stage correlation estimate follows immediately
from (19) and (43):

A
AV( 2 (T)) R(T) OI(T) w2 (T)= R(T) We (T) , (47)

where

13
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W (T) E (T) w(T) (48)e 1 2 (8

is called the effective (overall) weighting of the generalized spectral analysis
technique. It incorporates the temporal weighting w1(t) through its correlation +,(T)
defined in (44), and it involves lag weighting w2(r) directly. Reference to (44) and to
figure 2, for a typical temporal weighting, shows that +,(T) is as depicted in figure 4;
+,(T) extends over (-L,, L,) and is zero for ITrI > L,. Since the effective weighting
we(T) in (48) involves +,(T) and w2(T), we now see the reason for the particular
choices of L, and L2 in figures 2-4. Specifically, ± L, and ± L2 measure the non-
zero extent, in the T-domain, of the functions that are relevant to the effective
weighting. Although L, measures the nonzero extent of temporal weighting wl(t) in
the time domain in figure 2, and the nonzero extents of +,(T) and w2(T) are 2L1 and
2L 2 in figures 4 and 3, respectively, we will nevertheless refer to L, and L2 as the
"lengths" of +,(T) and w 2 (T), respectively, in the T-domain, for convenience.

- L1  0 L

Figure 4. Correlation +i(0) of Temporal Weighting w,(t)

In appendix C, +,(T) is evaluated for the class of temporal weightings*

WI(t) = E ak exp(i2kt/L1) for Itl < L1 /2 ,49)

k

which includes a wide variety of weightings such as rectangular, Hamming,
Hanning, Blackman, Harris, and the recent optimal weightings of Nuttall, reference
19. Specializations to real symmetric {ak} and to a limited number of nonzero
coefficients are also made in appendix C.

Finally, since second-stage spectral estimate 6 2(f) is a Fourier transform of A 2(T),
its mean value follows from (47) and (48) as

A
Av(G 2 (f)} = G(f) 0 W (f) (50)

where

We(f) -- fdT exp(-i2nfT) We () = W2(f) 0 W2 (f) (51)

*For brevity, here and later, we omit the "0 otherwise" statement that applies for Itj > L1 /2, as was
done in (3).

14
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is the effective (overall) window of the generalized spectral analysis technique of
interest here. The result in (51) follows by Fourier transformation of the product in
(48) and use of (44) (just as done in (45)). Relation (50) is a simple and informative
one for the average spectral estimate; it enables ready determination of the amount
of spreading caused by particular choices of temporal and lag windows. It holds for
any stationary process x(t) with spectrum G(f); thus x(t) needn't be a Gaussian
process for (50) to hold true.

As a special case of (50), consider lag weighting w,(T) to be I for all T. Then
W2(f) = d(f) and (50) reduces to the result in (45) as expected, since we are em-
ploying no lag weighting at all in this case.

As another special case, let temporal weighting w,(t) be I for all jtI < L1/2 and let
L, = T, L, << T. This corresponds to Blackman-Tukey processing. Then W2(f) is
proportional to sinc2(Tf), which is much narrower in f than W2(f), meaning that
We(f) = W2(f), the lag window alone.

Interpretation of the response of the effective window, We(f), via convolution
(51) can sometimes be deceiving, and it may be helpful and necessary to resort to
(48). For example, suppose w,(T) is 1 for I'T < L2 and 0 otherwise, where L2 > L1.
Then (51) says that we have to convolve sinc(L 2f), which has -6.63 dB side lobes,
with W2(f). Our first impression would be that We(f) is bound to have bad side lobes
regardless of the temporal window. But recourse to (48) and figure 4 immediately
reveals that we(r) = *t(T) for all T, and that W2(f) is totally irrelevant, provided that
L2 > L,. The scaling of +,(r) by a constant in (48), over the range of nonzero (T),
obviously has no effect on the relative side lobes of W,(f). Furthermore, the actual
calculation of the effective window via (51) is often tedious, whereas a Fourier
transformation of the product in (48) is a reasonable approach, even if only by an
FFT.

15
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Constraint on Temporal and Lag Weighting Lengths

The effective window We(f) was presented in (51). Its "width" is given ap-
proximately by the sum of the widths of the temporal and lag windows. As
discussed earlier, we wish to constrain the effective bandwidth Be of W,(f), so as to
be able to fairly compare the performance of different spectral analysis techniques.
The effective bandwidth is given by (1) and can be developed as

[fdf W 2 W2 (0) 2 2
B = If f) e e 1 iO w2(
e fdf W 2 (f) ~ dW2 (T) fdT. 2.) 2(T

j e fT eT JT~ 1 ) w2 (

-C)] 2 2 (
(f dT I w2 T) (52)

where we have used Parseval's theorem, the Fourier transform relationship in (51),
and (48). Since Be is to be considered fixed, (52) forces a relationship between
lengths Li and L2 of 1(T) and w2(T),

For example, consider rectangular temporal and lag weightings (this is not a
practical case and is presented only for illustration purposes):

wI(t) = 1 for Itl < L1/2 ,

1(T) =-L,- ITI for IT1 < L,

w2(i) = 1 for ITI < L (53)

Then (52) yields

-1 L(In
B-  = 2J dTr(-e f

(54)

where
L -= min(L1, L2 )

(55)

Given a value of B,, (54) can be considered as an equation for L2 in terms of L,, or
vice versa. Here we have fixed the shapes of the weightings and are varying the
lengths so as to realize the specified frequency resolution BV.

16
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Generally, the qualitative character of the interrelationship between lengths is as
depicted in figure 5, for fixed weighting shapes. The larger one of the lengths is
made, the smaller the other length can get and still satisfy the specified bandwidth
of the effective window. For a specified pair of shapes for w,(t) and w 2 (T), a plot
like figure 5 can be used in two different ways. If we pick a value for BeL1 , this
determines BeL 2 and hence L2 /L . On the other hand, choice of a value for the ratio
of lengths, L2/L,,puts a line through the origin of slope L2/L,, and thereby
determines BeLi and BL 2 where the line intersects the curve. We note therefore that
knowledge of one of the following three quantities determines the other two: L2/L 1,
BeLl' BeL 2.

The limiting parameter values on figure 5 are determined as follows: as L, -0 00,
then L 2 -* L2(min), where now (from (52))

W M) 2

B 1  f dI2 1 = 2L2 (min) c{w 2) .

Here, c{ } is a "shape factor" defined for any limited-duration function g as

c{g} := dT (T

21, 9f 1-7071(57)

where it is assumed that

g() = 0 for I > L ; (58)

B L2

2c w2l

01 B T BL

2ce e1

Figure 5. Interrelationship of Lengths L, and L, for Fixed Shapes
of the Temporal and Lag Weightings

17
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that is, 2L. is the nonzero extent of g(T). Shape factor c{g} is independent of the
magnitude of g(r) and of its length on the r-scale. Thus (56) yields
BeL,(min) = (2 c{w 2 })-', which is entered on the ordinate in figure 5. However,
since LI is limited by T, the dotted portion of the -urve on the far right is not at-
tainable.

Conversely, if instead, L2 -* 0, then L, -- L,(min), where now (from (52))

Be1 = dT V. (0' - = 2L(min) c{} ; (59)

that is, BLl(min) = (2 c{+})-'. This value is attainable; it corresponds to no lag
weighting. The ratio, L2/L 1 , of weighting lengths can take values in the range
L2(T)/T to >; for BeT> 1, this zonstitutes the range from almost zero to infinity.

Since the shape factors c{w 2} and c{+l} are important limits on the weighting
lengths, tables of their numerical values for a number of useful weight functions are
given below. The weightings listed under C5, C3, CI are those given in reference 19,
figures 10, 11, 12, respectively; the notation means

CS: continuous fifth derivative of weighting
C3: continuous third derivative of weighting (60)
Cl: continuous first derivative of weighting

For the class of lag weightings given by

w2() = r ak cosrkr/L2 ) for ITI < L2  61)k>0O(1

the shape factor is

J2I r a0 + f (a1 + a2 +
2  2 2(a 0 + a a2 + ... )2 (62)

This is evaluated for several weightings in table 1.

Table 1. Shape Factor for Lag Weighting w2(r)

w2(T) C{w 2 (T)}

Rectangular 1.000
Hanning .3750

Hamming .3964
Blackman .3046

C5 .2256
C3 .2442

Cl .2558

18
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For the class of temporal weightings given by

W1 (t) = , ak cos(2irkt/L I) for jtl < L1/2 (63)
k_0 ' (3

the correlation 4t(T) is evaluated in general in appendix C. The shape factor of + 1 (T),

r 21 f d- [ l()1
1=2 1 i1i0~ (64)

can then be evaluated numerically and is given in table 2.

Table 2. Shape Factor for Correlation
+,(T) of Temporal Weighting w,(t)

w1(t) c{}

Rectangular .3333 = 1/3
Hanning .2405 = (8n 2 + 35)/(48 n2)

Hamming .2628
Blackman .2073

C5 .1545
C3 .1678
CI .1763

Plots of the relationship between LI and L2 dictated by (52) are given in figure 6
for various combinations of temporal and lag weightings. For a rectangular lag
weighting, the curve will actually reach BeLI = (2c{ 1 })-I when L2 = LI; then the
curve goes vertically up from this point for L2 > L, (see figure 6A). The procedure
for the evaluation of figure 6 is as described under figure 5; namely, pick a value for
L2/L 1, compute BeLi via (52), and then compute BL 2 = BL *(L 2/L,).

If the maximum segment length, L,, is specified (as for example, when the
maximum FFT size and the time-sampling spacing A, are fixed), under what con-
dition can a desired effective frequency resolution, Bd, be met? The answer to this
question is available from figure 5; namely, we see that

-11

B e L I (2c[01) , or Be -- 2c{[ 1 }L1  (65)

Thus if desired resolution Bd is greater than or equal to the right-most term of (65),
there exists a choice for lag length L2 that will yield the desired frequency resolution.
The shape factor in (65) depends only on the temporal weighting w,(t).
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B2

Be 21.0__ 

_ _ _ _

45 5 6

6A. Rectangular Temporal Weighting, Rectangular Lag Weighting

4
BeL 2

e 2~
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2.216__I_

o 123
BeL

6C. Rectangular Temporal Weighting, C5 Lag Weighting

6

2.048

0 2 3 4 5 6

6D. Rectangular Temporal Weighting, C3 Lag Weighting

Figure 6. Allowed Lengths of Various Temporal
and Lag Weighting Pairs (Cont'd)
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5

B L2

1.954

01o 11.5 _ _ _ _ __ _ _ _ __ _ _ _ _ _ _ _

012345 6

6E. Rectangular Temporal Weighting, C1 Lag Weighting

4

e L2

4

-- -_ - I-

0 12 345 6
B L1

6F. Hanning Temporal Weighting, Hanning Lag Weighting

Figure 6. Allowed Lengths of Various Temporal
and Lag Weighting Pairs (Cont'd)
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Normalization of Weightings

The average of the first-stage correlation estimate was given in (43). For T =0, it
yields

Av{WR (o) = R(o) (0) (66)

Since R(O) is the true power in the process x(t) under investigation, it is convenient
to normalize according to

1= 0 = dt w2 (6f (67)

Then A, (0) is an unbiased estimator of R(0).

Additionally, from (47) and (48), we have, for the second-stage correlation
estimate,

Av{R2 (o)} -R(0) * (0) w2 (O)

(68)

Therefore, in addition to (67), we also set lag weighting value

w2(0) = 1 , (69)

making A2(0) an unbiased estimator of R(0). There follows, for the effective
weighting,

W(0) 1 (7(70)

Since there is no significant loss of generality, the normalizations in (67), (69), and
(70) will be used in the rest of this report.

Discrete-Time Processing

For the impulsive temporal weighting introduced in (24)-(29), the normalization
(67) must be modified somewhat, since the integral of w2(t) in (24) would be infinite.
We resort to (28) and require that the origin value of the sample correlation satisfy
the unbiased requirement that

Av(R 1 0} = R(0) (71)

Reference to (28), (29), (26), and (43) yields

AvR Av(Ryp12 ft A W2 R(0) ; (72)Av{R10} R 0 At m pm

23



t
TR 6459

therefore the normalization is
S2

At  ]Wlr 2 1
m (73)

This is the discrete analog to the integral constraint in (67).

The correlation +,(T) of temporal weighting wl(t) in (24) is given by (44) as usual
and is expressible as

1 (T) = At E O1k 6(T - kAt)
k (74)

where

1k -At 1 Wlm Wl,m-km (75)

Thus we see that (73) is tantamount to +10= 1, which replaces the constraint +1(0) =I
in (67) for the continuous temporal weighting case.

If we also require that second-stage correlation estimate (42) satisfy the unbiased
requirement

Av{R 2 0 ) R(O)

(76)

then, as before, we require

w2(0) = 1
2 

(77)

Finally, the effective weighting becomes, upon use of (74),

W e(T) = l(T) W2 (T) = At T- Ol k w2 (kAt) 6(T - kA d
k (78)

The normalizations adopted above make the area of the impulse at r = 0 equal to

At 10 w2 (0) At (79)
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Examples of Effective Windows

We consider first a rectangular temporal weighting wl(t), for which the
correlation is triangular,

1 - IlL1  for Iti < Li

(80)

and the class of lag weightings as given earlier by (61):

w2 () = ak cosrkr/L2) for II < L(2
k.O (81)

Then constraint (52) yields

BL = (fJ dx rE. ak cos(kx)] 2 LI 1 o2 fr L
e 2 0 Lk>0 7J L j

(82)

The effective weighting, w,(T), is given by the product of (80) and (81); its Fourier
transform is the effective window

2L 2L 2 \ ( 1 k
e 2 ) ak 1 i) 2-v sin(21rv) 2 _l22 k k 1 4v _ k

L22 2
L I (1) k cos(2v) 4v + k 2

1 -(-1 2< L1  (8k)

where

v- Be L2 u , u - f/B ee 2 (84)

Although (82) and (83) could be extended to the case where L2 > L,, that range is not
of practical interest, as will become apparent later.

The numerical procedure for evaluation of the effective window is to first select
the shape of the lag window by specifying coefficients {ak}. Then we choose a value
for L2/L, and compute BeL 2 from (82). We can then employ (83) and (84) to
determine We(f). Four examples are given in figure 7, where we have plotted

Ie (f)
dB 10 log fV  f

e e (85)
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7A. Effective Window for Rectangular Temporal Weighting

and Hanning Lag Weighting
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fi
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7B. Effective Window for Rectangular Temporal Weighting
and C5 Lag Weighting

Figure 7. Examples of Effective Windows for Rectangular Temporal Weighting
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7C. Effective Window for Rectangular Temporal Weighting and C3 Lag Weighting

-20

-40 _ _ _

US

7D. Effective Window for Rectangular Temporal Weighting and CI Lag Weighting

Figure 7. Examples of Effective Windows for Rectangular Temporal Weighting (Cont'd)
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The curve corresponding to L2/L, = 0 (i.e., L, = oo) is that for the lag window
alone.

The overriding impression of the plots in figure 7 is that the effective window has
poor side lobe behavior and decay unless L2/L 1 is chosen very small. That is, the
poor side lobe behavior of temporal window Wj(f) enters the convolution (5 1) for
We(O, and is difficult to suppress, even by choice of good lag windows. It would be
desirable to realize the bottom-most figures in each of these plots, since these latter
curves have good side lobes and decay; a procedure for accomplishing this goal is
presented in the next section.

The situation is significantly improved when the temporal weighting is tapered.

An example for Hanning temporal and lag weightings is given in figure 8. The
bottom-most curve has an eventual 18 dB/octave decay because +,(T) has a
discontinuous fifth derivative at T = 0, which is not compensated by w2(t). (+,(T)
also has a discontinuous fifth derivative at T= ±L, but this is converted to a
discontinuous seventh derivative for we(T) by means of w2 (T) when L2 = LI.)

0

-10

-30

dB 
LLW

1 78 dBOCTAVE ECAA
3 4M 891

L JLI I ffilsos

fie*

Figure 8. Effective Window for Hanning Temporal Weighting and
Hanning Lag Weighting
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Discrete-Time Processing

The temporal weighting w,(t) is given by (24), and its correlation +,(T) by (74),
where coefficients {1k} are given by (75). The Fourier transform of (24) leads to
temporal window

WI(f) = At  1 Wim exp (-i2TrfmAt )

m (86)

which has period I/A in f, and is real and even, since weight sequence {w1m } is real
and even.

For a general lag weighting w 2(T), the effective weighting is given by (78). The
effective window We(f) is given by (51) as the Fourier transformation of (78):

W e(f) = At E 1Ik w2 (kAt) exp(-i27rfkA t) Ik (87)

which also has period I /A, in f, and is real and even, since lag weighting w2 (T) is real
and even. This result holds for any lag weighting w2(r) and is a very useful form for
computing We(f) for any value of frequency f. The convolutional form of (51) is not
very useful for computing We(f) for general W2(f).

As a special case, we can evaluate (87) at particular frequencies
fn = nAF = n/(NAt)-', as in (33) and (34):

n k w2 (kAt) exp(-i27rnk/N) , (88)

k

which can be accomplished as an N-point FFT. We should choose N large in order
that (88) be capable of tracing the fine detail of We(f). This is an attractive and
efficient way to evaluate the effective window.

A Special Lag Window for Discrete-Time Processing

The result in (87) applies for discrete time sampling and arbitrary lag weighting.
We now specialize to the lag window given in (38):

W2 (f) = Af Fn 
w 2 n 6(f - nAf) ,

where sequence {W2 } is real and even, and frequency spacing A, need not be related
to time spacing A, in (24). Then, via inverse Fourier transformation (20), the
corresponding lag weighting is

W2(T ) = A W2  exp(i21TnAfT)
n (90)

and, in particular, sample values

w2 (kAt) A V W2 n exp(i
2nnk fA)

n (91)
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which can be used in (87) to evaluate W,(f) for any frequency f whatsoever.

An alternative form to (87) for calculation of We(f) for this special lag window
(89) is afforded by substitution of (89) in the convolutional form of (51):

W (f) = E 2 (f - nA
e f W2  W1  f (92)n

The temporal window W,(f) is given here by (86). Equation (92) is an attractive
form when the number, N2, of nonzero coefficients { W20j is small and W,(f) can be
evaluated in closed form. In fact, (92) actually holds for any temporal weighting
w1(t); it is not limited to the discrete-time forms (24) and (86). Equations (87) and
(92) are duals in the sense that (87) applies to any w,(r) and an impulsive w1(t),
whereas (92) applies to any W,(f) and an impulsive W2(f). Either equation can be
evaluated at any f of interest.

Our first example is rectangular temporal weighting; from figure 2, (24), and
(73), wm = L,1/ 2, where L, = NA,. Then, from (86),

Wl(f) = L1 E L1 QN (L f)[ N1 sin(rLIf/Nl) J 1 (93)

For the lag window, we take impulsive form (89); then (92) and (93) give

We(f) = L1 Af E 2n QNI (L1f - nL 1Af)
n 1 (94)

Two important choices yet to be made are LAi, the relative frequency spacing used
in frequency smoothing, and the set of coefficients {W2 ,}. For Hanning frequency
smoothing, the latter is

1/2 for n = 0

1 /4 for n = +1 N = 32n A f--

0 otherwise

The effective windows for L1Af = 1/2 and I are given in figure 9 for N = 32.
Window (94) is even about f=0 and has period I/A, in f; hence only the region
0, (2A,)-' is plotted in f. The window in figure 9A has no deep notches since the
frequency displacement (spacing) Af = (2L,)-1 causes the notches to be filled in; the
window for Af = L,' in figure 9B reinforces the notches and has a significant
shoulder near f = I/L. Both windows have slow decay with frequency and do not
have significant rejection, even near Nyquist frequency. Closer spacings than
(2L 1)-t do not improve the decay or rejection capabilities; wider spacings than Li'
generate humps in the effective window. The bad features of rectangular temporal
weighting are not undone by Hanning frequency smoothing; see also figure 7A.
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The second example is rectangular temporal weighting with N, = 32 and rec-
tangular frequency smoothing over five frequency samples; i.e.,

1/5 for Inl __ 2
Wn = If N = 5

0 otherwise 2 (96)

The effective windows for L Af = 1/2 and 1 are given in figure 10. The main lobe
humps in figure lOB are caused by the displacements of W-(f) according to (92).
Both windows again have poor decay and poor rejection; however, the main lobe is
more box-like in shape than previously.

The third example is identical to the previous one except that N2 = 11. The plots
in figure 11 reveal that the main lobe is quite box-like, but the decay and rejection
are no better than previous cases. According to (92), we are merely taking the poor
side lobes and decay of W-(f) and moving them about, but not improving them in
any way.

The last example in this subsection is Hanning temporal weighting with no
frequency smoothing at all. The effective window for Nl = 32 is simply W2(f) and is
plotted in figure 12. It has the familiar -31.5 dB peak side lobe, a rapid decay, and
significant rejection capability.
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Lag Reshaping for Desired Effective Windows

From (48), the effective weighting of the generalized spectral analysis technique is
given by

we(T) 1 t1(T) w2(-r)

(97)

where +(T) is the correlation of temporal weighting w,(t); see (44). Now suppose
that for a given temporal weighting w,(t), with associated correlation +,(T), we
choose lag weighting

W2() d for I l L2  < L, ,

-1 (98)

where wd(r) is a desirable weighting with wd(O) = I (in keeping with (67) and (70))

and

wd(T) = 0 for ITI > L2

(99)

Notice that L 2 > L, is disallowed in (98) since +,(r) = 0 for ITI > LrP Then sub-
stitution of (98) in (97) yields

We(T) = Wd(T) , We(f) = Wd(f)e Wd~f)(100)

That is, the effective weighting and window are equal to the desired behavior. We
have "undone" the effects of bad side lobes in temporal window W,(f) by reshaping
according to lag weighting w2(T) in (98). (The effect on the variance of the second-
stage spectral estimate 6 2(f) will be considered later.)

To see how much can be accomplished by this approach, some attainable ef-
fective windows that can be realized via lag reshaping, for continuous rectangular
temporal weighting, are given in figure 13 for the largest possible value of L2,
namely, L2 = L. Superposed on the window Wi(f) for rectangular temporal
weighting are the effective windows for four candidate lag reshapings, for L, = LI.

These are the narrowest possible effective windows for a given L1. The first one in
figure 13A corresponds to an effective Hanning weighting. The peak side lobe is
only reduced from -13.3 dB to -15.7 dB, and the asymptotic decay is improved to 9
dB/octave from 6 dB/octave. The main lobe width is only slightly broadened.

Much greater improvements in side lobe behavior are possible with other lag
weightings, and are illustrated in parts (B)-(D) of figure 13. They illustrate,
respectively, peak side lobe levels and decays of: -30.5 dB, 21 dB/octave; -41.3 dB,
15 dB/octave; and -46.7 dB, 9 dB/octave. The deeper peak side lobe is realized at
the expense of a slower asymptotic decay. They all have about the same main lobe
width. The C5, C3, C! weightings were introduced and explained in (60).
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Figure 13 illustrates how advantageous the reshaping technique can be in terms of
peak side lobe and asymptotic decay, although the main lobe width is significantly
increased. In fact, the peak side lobe at f 5 1.5/L, for the rectangular window is
really not suppressed,so much as it is smeared out; however, the other peaks of
Wj(f) for If I > 2/L, are indeed significantly reduced. Thus reduction of leakage via
lag reshaping is a very effective method, provided that we accept the nearest side
lobe of the temporal window; this conclusion is in contrast to reference 20, page 57.
These general conclusions on lag reshaping hold also for temporal weightings other
than rectangular, although the exact degree of improvement will be different.

If L2 is chosen less than L, the effective windows in figure 13 are simply
broadened according to the ratio L1/L 2. The peak side lobe levels and asymptotic
decay are unchanged, but the main lobe width is increased. Here we are presuming
L, fixed and decreasing L2.

If we insist that the combination of temporal weighting w,(t) and lag reshaping
w 2 (T) in (98) have effective bandwidth B., then use of (52), (99)-(100), and (57)-(58)
yields

W2 () W2(0We(0) wd(O) 1
Be= dT W 2W fd = 2L2 c{wd}

!~~ dfw(' wd(r
(101)

where c{wd} is the shape factor of Wd(r) (see table 1). Thus

BL 2 = 1 for L2 _ L1 <T
e2 2-(I02A)

the limits on L, in (102A) follow from (98) and (15).

A plot of the interrelationship between L, and L2 (introduced in figure 5) is shown
in figure 14 for the case of lag reshaping. The reason that the plot is flat, in contrast
to figures 5 and 6, is that the shape of w2(r) now changes as L, changes. This
behavior is discernible from (98), since the denominator varies while the numerator
remains fixed according to the selection of wd(T) and its associated bandwidth-
length factor (102A).

If the maximum segment length, L,, is specified (as for example when the
maximum FFT size and the time-sampling spacing A, are fixed), the condition under
which a desired effective frequency resolution, Bd , can be met is given by figure 14.
Namely, we see that

B>e i.2 e{wd} L, (102B)

Thus if desired resolution Bd is greater than or equal to the right-side of (102B),
there exists a choice for segment length L, that will yield the desired frequency
resolution. The shape factor in (102B) depends only on the desired weighting wd(r).

(See (65) and the accompanying discussion for the case where lag reshaping is not
employed.)
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Variance of Spectral Estimate

Up to this point, we have presumed nothing about the process x(t) except that it
be (second-order) stationary during the observation interval T. Now we make a
couple of assumptions about the process in order to obtain manageable expressions
for the variance of the second-stage spectral estimate 6 2(f), at frequency f. Our first
assumption is that the true spectrum G of x(t) varies slowly in the neighborhood of
the frequency of interest, f. More precisely, from (50) and (70), we obtain, for the
mean spectral estimate,

AV{( = du G(f - u) We (u) Gf) f du WeC u) = G(f)
(103)

where we assume that spectrum G is relatively constant in the frequency band
(f-Be/2, f+Be/2); i.e., the only region where effective window We in (103) is
substantially nonzero is in the range (-Be/ 2 , Be/ 2 ).

Our second assumption is that x(t) is a complex Gaussian process. The variance of
6 2(f) is developed under this assumption in appendix D, culminating in the exact
result in (D-13):

A 2
Var{G2(f)) = f dct d8 G(a) G(8) jy(f - a, f- 8)1 Qp(SC - 8))

(104)

where window convolution function

Y(x, y) - du W (u) W (x - u) W*(y - u)f 2 1 1(105)

and periodic function

Qpu) =[sin(rPu) 1
2

LP sin(lu)J (106)

The variance result in (104) does not require that spectrum G vary slowly in the
neighbor of f; the result utilizes only the Gaussian assumption on the process x(t).
The temporal and lag windows contribute through the window convolution func-
tion y, while the shift S and number of pieces P appear through the periodic func-
tion Qp.

When the assumption regarding a slowly varying spectrum G in the neighborhood
of frequency f of interest is also invoked, (104) simplifies to forms given in (D-20)
and (D-24); the latter is a "weighting domain" version of the variance:

A 2 1 P ~j~ 2,
Var(G2 (f)} = G (f) I - ) f dT W2 (T) 3T, pS)

(107)
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where

(TJ1)E dt w (t + 11 Tw (t + 2 )W 1 (t + P W ( + -14 T)

-- 3 (+T, +) (108)

is a third-order correlation of temporal weighting wl(t). The form (107) is very
useful if +3 can be evaluated in closed form. An "ambiguity domain" version of the
variance is given by (D-20).
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Quality Ratio
The quality ratio for spectral estimation was defined in (4). With the aid of (103)

and (107), it is given by

2AVar{G,2 (f))
q Av 2 {Cf2 (f)})

P-1 1 - i)fdT W2 (T pS) (109)E p P2l-(09

Since the smallest possible value of Q is (TBe)-i (see (11) et seq.), the normalized
quality ratio is

TB P 1 2 dNQR =_ Q • TBe =1 f---p---(TS

p=l-P
(110)

This quantity can never be smaller than unity.

If we employ (52) and the normalizations (67) and (69), the convenient form

- w2(T) 3 (TpS)

NQR = T p=- p 2 (111)

fdr W2 ('r) 1(T)

for the normalized quality ratio is obtained. We are interested in the behavior of the
normalized quality ratio for different choices of P, S, w1(t), and w 2(T). The con-
straint of a fixed effective bandwidth Be has been injected into the normalized
quality ratio via the use of (52) in (I 11). The quantities +, and +3 needed in (I 1l) are
given by (44) and (108) respectively.

Before we embark oin particular cases, some general observations on overlap
(shift S) are in order. For a minimum normalizcd quality ratio (minimum variance)
with each temporal weighting w,(t), we should use approximately the optimum
overlap as derived in reference 9. For example, Hanning temporal weightiftg should
be employed with approximately 62 percent overlap, although there is only an 8
percent loss in stability if 50 percent overlap is used for convenience (reference 9,
tables 5 and 6). There is no point in considering excessive or inadequate overlap,
since this leads to excessive computational effort or more variance, respectively.
Inadequate temporal overlap cannot be made up, in terms of variance reduction, by
any amount of quadratic smoothing. This can be seen by observing that poor first-
stage correlation estimates A1(T) are merely multiplied by lag weighting w2(T), and
are not improved statistically in any way for ITI < L2; those estimates for ITI > L2 are
discarded by the lag weighting.

Some related work on the effects of windowing on stability is given in references
21 and 22. However, the present report is more thorough and detailed in its
treatment of the problem and the inclusion of a bandwidth constraint.
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Special Cases of Generalized Spectral Analysis Technique

This section will consider several special cases of the normalized quality ratio and
show how some earlier results are obtained as limiting cases. The next section will
treat the generalized spectral analysis results.

One Piece, P = 1

When only one piece is used in the first-stage spectral estimate NO(f) in (14), we
have a generalized version of the Blackman-Tukey approach, in that the data x(t)
are weighted by wl(t) prior to computing the sample correlation; see (16) and (13).
Also, we allow length L, < T (although we soon show that the best L1 is equal to T,
the available record length). From (111),

I T 2 02 (t)
dT W2 (T) *0(r) (112)

where (using (108))

(T) 3(T,0) = fdt w2(t + L) w2 (t- f dt w2(t) w2(t - T)

(113)

is the correlation of the squared temporal weight function w2(t).

Now if L, >> L2, w2 is much narrower than +, or +2. In that case, the exact shape
of w2 is irrelevant, and (112), (113), (44), figure 2, and Schwarz's inequality yield

N2 (0) fdt w(4 T
Sw I (t) TNQR1 T ;T- = T [f 2> ' f o r  L 1 > > L 2

1 (0) Ft w 2( t )  2*(114)

Equality in (114) results if and only if wj(t) is constant for Iti < L1/2; furthermore,
the best value for L, is then its largest allowed value T (see (15)), in which case we
have Blackman-Tukey processing and

NQR1 (rectangular wl) I 1 for T = L1 >> L2

This result agrees with reference 2, section B.8. It should be noted that L, >> L2
implies BL >> BL 2 > .5/c {w 2} " I, according to figure 5 and table 1; thus stable
estimates result in this case.

Instead of rectangular temporal weighting, consider Hanning weighting:

18 2/7nt\
w1 ( :) = Cos for t< L1 /2

(116)
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Then

2 dt 4 M 35
01 ( 0 )  fdt w (t) 1 02(0) dt lt) 1 8L1  (117)

and (114) yields

35 T
NQR 1(Hanning w1) T -8 L-I  for L, >> L2 (118)

The best L1 is again T; however, the minimum value of the normalized quality ratio
is then 35/18, which is twice the value in (115) for rectangular temporal weighting.
This is due to the squandering of the edges of the available data record by the small
values there of Hanning temporal weighting.

Now instead of assuming L, >> L2, let us reconsider, for general wl, L,, L2, the
normalized quality ratio (112). Since w,(t) is zero for ItI > L1/2, we have from (44),

b(r)

01(T) = f dt w(t) wI(t - T) for ITI < L1  ,
a (T) (119)

where
aCt) = max(-Ll/2, - L1/2 + )

for ITI < L

b(-r) = min(L 1 /2, L1 /2 + ) (120)

Then by Schwarz's inequality, (113), and (120),

2 b(t) 2 2 .b ~t)
2 :L dt w2(t) W2 - f dt 1

a(r) a (T)
(121)

= 02(T) (L1 - ITI) for Inr1 < L,

Equality is realized in (121) if and only if w,(t) is constant for Itj < L1 /2; that is, the
best temporal weighting for maximum stability is rectangular when P = 1. This
conclusion holds regardless of the form of lag weighting w,(r) or the relative sizes of
L, and L2.

As an example, for rectangular temporal weighting,

W(t) =L for Itl < L1 /2

(T)= 1- ITI/L 1  for Iti < LI  ,

() = (1 - ITI/L 1) for ITI < , (122)
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and (112) yields for general w 2(T),

f 2L

NQR (rect. w) T L
1_L 1  dL w (r

1T W 2 ( I LI) (123)fL dw2(x L

The ratio of integrals is obviously greater than I. For a monotonically decreasing
lag weighting w2(T) of fixed shape, the ratio of integrals is minimized by choosing-L
as large as possible. Since the leading factor also has the same behavior, the best
value for the normalized quality ratio is

T dwr w(T) 
U(2

NQR (rect. w) I JT T d2 2(1 T 2ii fo 1, (124)

We cannot give numerical values to this ratio of integrals until we select a lag
weighting w2(T) and determine the specific value of L2(T); see figures 5 and 6. But if
TB e >> 1, which is the usual case for reasonably good spectral estimates, then
L 2 << L1 = Tand

NQRl(rect. wl) - 1 for L= T, TB >> 1 (125)

This result holds independently of the exact shape of the lag weighting w2(T); thus
we could choose w 2(T) such that the effective weighting we(T) in (48) has good side
lobe behavior, as discussed in an earlier section.

No Quadratic Frequency-Smoothing

No quadratic smoothing corresponds to

W2 (f) = 6(f),

w2 ('T) = 1 for all T (126)

Thus L2 =-, and (109) becomes

1Q ( 1 ) dT * 3 (rpS)
p=l-P

1 P /1 2
P - *I(pS)
p=1-P 1 (127)
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since

fdT 03(t,u) = dT fdu wl(u)W(U - )W1 (U + T) W1 (U + r -

= fdu w1 (u) w 1( 0) -2() (128)

by use of (108). The result in (127) is identical to reference 9, equation 8, when we
recall definition (109) and normalization (67).

Non-Overlapping Segments

Let us choose time shift S in (13) equal to the segment length L,; this leads to
abutting time segments. From (15), we have

PL = T (129)

where we have chosen to use up all of the available data length. (This is different
from the earlier subsection for P= I where we allowed LI < T.) The general
normalized quality ratio in (I 11) reduces to

fdT w2( ) 2(t)
NQRp 1 2 2

1JdT W 2 (T) 0 2 T) (130)

where we used (129), the fact that w,(t) is of length LI, and (113).

Once again, we refer to bound (121) and the fact that equality is realized only for
a flat weighting w,(t). Thus, from (130) and (122),

j dT W 2() "7')

NQRp(rect.w ) = 2 2

for any (real symmetric) lag weighting w2(r). The ratio of integrals is obviously
always greater than unity; therefore, for a monotonically decreasing lag weighting
w2 (r) of fixed shape, values of L, large in comparison with L2 are preferred.
However, L1 >> L2 means that

P
TB = PL1 B >> PL B -P ,
e 1e 2 e -- 2c~w 2(122 (132)

according to (129) and figure 5. Thus large time-bandwidth products, TBe, are
required; also P must be kept small enough to realize LI >> L2. In this case, we have

NQRp(rect. w) 1 for TBe > (133)
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regardless of lag weighting w 2(T). Qualitatively, when L, >> L2, the edge effects of
segmenting the data x(t) are negligible, since only a small fraction of the utilized
correlation values that can be calculated from a record of length T are neglected
when using segments of length L Stated alternatively, all the first-stage correlation
estimates that are used, namely kR(T) for H-r < L2, have the same quality (stability)
when L 2 << LI.

An example of the exact normalized quality ratio for Hanning lag weighting and
rectangular temporal weighting is afforded by substituting the equation

w2 (T) = cos2  for IT[ < L(134)

into (131) (see figure 7A for the effective window):
oy 4 2L2 x

dxcos x x)

NQRp(rect. wl, Hann. w2) = y  4 2 2  (135)
1 dx co x (135)

where

y min ,L) (136)

Equation (135) is plotted* as the top curve in figure 15A. As expected, the
normalized quality ratio tends to 1 as L2/L, tends to zero. But even for as large a
value as L2/L, = .5, the normalized quality ratio has increased only by 12 percent.
Thus the penalty in increased variancefor not realizing a small ratio for L2/L ,is not
severe.

Also plotted in figure 15A is the normalized quality ratio for the three lag
weightings introduced in (60) et seq. They all lead to smaller values of the
normalized quality ratio, for the same value of L2/L1 ; in fact, lag weighting C5
incurs only a 7 percent increase in variance when L2/L, = .5, in relation to the ideal
value 1. The reason that the normalized quality ratio is lower is due to the fact that
the lag weightings drop to zero faster within their length L2.

Non-Overlapping Segments; Lag Reshaping

The possibilities of lag reshaping have been discussed earlier with regard to the
mean of the spectral estimate and the effective window. We now want to see what
effect lag reshaping has on the normalized quality ratio in (130). Substitution of (98)
in (130) yields

fr 2 02(T)
Wd(T)

NQRP(lag reshaping) = L1  dZ 2 for L2 :_ L1
1 dT Wd T) (137)

*The quantity TBe is not involved in figure 15; some related computational considerations are
discussed in appendix E.
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The special case of rectangular temporal weighting is obtained by employing (122)
in (137):

f dT2 ( -7

NQRp(rect. w1, lag reshaping) = L2  for L2 * L1
fO dT W()(138)

0

The division by +,(T) in reshaping (98) increases the variance (for a specified L 2/L1

and for wd(T) = w2(T)) above that in (131), because we are more heavily weighting
regions where the denominator in (138) is smaller.

Equation (138) is plotted in figure 15B for desired effective weightings of Han-
ning, Cl, C3, and CS. Notice that the abscissa is now limited to L2/1 1 < I. As
expected, the normalized quality ratio tends to 1 as L2/L tends to zero; that is, we
can do lag reshaping for good side lobe behavior and lose little in terms of stability,
provided that L, is chosen sufficiently larger than L2. Of course, the normalized
quality ratio values in figure 15B are larger than those in figure 15A, for the same
value of L2/L. As an example, for desired effective weighting C1 , if we take
LI = 2L 2, the increase in variance over the ideal value is only 9 percent. Thus lag
reshaping is an attractive procedure for spectral estimation; recall from figure 14
that L 2 is set by the specified B. and the shape of wd(r).
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General Results on Stability
We now return to the general normalized quality ratio in (I 11) and recall con-

straint (15). We will select time shift S according to

S = qL1  , (139)

where q = q{w1 } is a fraction specified to be in the range (0, 11 and is dependent on
the particular temporal weighting w,(t) employed. The observations made in the
paragraph following (111) are relevant in this regard. For example, with no
quadratic frequency smoothing and with Hanning temporal weighting, q = .39 (61
percent overlap) is virtually optimum, although q = 1/2 loses only 8 percent ill
variance-reduction capability (reference 9, tables 4-7). We also select equality in (15)
so as to make maximum use of the available record length, i.e., minimum variance
of the spectral estimate. Then we have

T
L1+ (P > 1)

I +- (P - 1)q (140)

Thus for a given T and specified shift fraction q, L, can take on only a discrete set
of values.

Arbitrarily large values of P are not allowed in (140). because this would result in
such small values of L, that the bandwidth constraint, Be, could not be met. From
figure 5, the lower bound on BeL limits

2c{ i} BeT - 1
P = +

max q (141)

(Actually, Pmax must be the integer part of the right-hand side.) Thus Pmax depends
on the temporal weighting w,(t) directly through its shape factor c{+} and in-
directly via the selected shift fraction q = q{w1 }. For q = 1, no overlap, (141)
reduces to (E-1).

When P = Pmax, L, is at its minimum value, and L2 must be greater than T; it can
be co (see figures 5 and 6A). In this case, there is no quadratic frequency smoothing,
and we have the situation studied in detail in references 9 and 12, and mentioned
earlier in (126)-(128). At the other extreme, when P = 1, we have Blackman-Tukey
processing with the generalization that the temporal weighting need not be
rectangular; this case was considered in the previous section. The range of values of
L2/L, is shown in (E-2) and (E-3) to be very wide when BT >> 1, which is a usual
practical case.

More generally, for P in the range [I, Pmax], we can investigate the tradeoff
between the amounts of temporal- and lag-weighting, for specified resolution B.
and for specified weighting shapes of interest. Below, we consider the two cases of
rectangular temporal weighting and Hanning temporal weighting.
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Rectangular Temporal Weighting

It was shown earlier in figure 15 that rectangular temporal weighting with no
overlap results in small values for the normalized quality ratio, whether the lag
weighting is reshaped or not, provided that L2 is chosen somewhat smaller than L.
Now the question arises as to whether one should use any overlap, such as 50
percent, with rectangular temporal weighting.

We presume B T >> 1. For no overlap, the estimate of first-stage correlation
R (T) at T = L1/2 has only half the degrees of freedom as the estimate at T = 0. But
with 50 percent overlap, the degrees of freedom for estimation at T = L /2 are about
the same as at T = 0. This is why 50 percent overlap for rectangular temporal
weighting appears attractive.

However, for estimation of RI(T) at T > L1/2, we still do not get as many degrees
of freedom as for Blackman-Tukey processing, because some data points never
interact. For example, although at T = 3L,/4 we have doubled the degrees of
freedom by using 50 percent overlap, we still have only about half of the number
that are available at this T value via Blackman-Tukey processing.

In order to ascertain quantitatively the merit of overlapping for rectangular
temporal weighting, we have evaluated the normalized quality ratio (111) for lag
reshaping to realize a desired effective weighting equal to C1 as given in (60) and
(61) (reference 19, figure 12). That is, in (111), we use

w2 () d for <-- L1

w2 Ct) <(142)

where +,(T) is given by (122). In addition, we need the third-order correlation (108),
which is

13(T Q- + H')for HTI + Jl < L,

(143)

for rectangular temporal weighting.

For the two cases of BT = 100 and BeT = 1000, the normalized quality ratio has
been evaluated for q = 1, .75, and .5, and plotted in figure 16. The explanation of
the behavior of the curves is as follows:

q = 1 No Overlap

If P = 1, then L2 << L, and it follows that for all ITI < L2, R(r) is estimated with
virtually the same degrees of freedom as at r=0, where we have the maximum
degrees of freedom possible to estimate R,(0). As P increases toward Pma,,' then L,
tends to L2. Now R1 (0) is still estimated with the full degrees of freedom, but RI(T)
for T # 0 is estimated with fewer degrees of freedom. For T near L2, the loss in
degrees of freedom in estimation of Ri(r) is significant, and the variance increases.
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Figure 16. Normalized Quality-Ratio for Overlapped Rectangular
Temporal Weighting and Lag Reshaping to CI
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q = .5 50 Percent Overlap

For P = 1, there is no overlap and conditions are identical to those described
above. For P = 2, the sudden increase in variance can be explained as follows: from
(16), the first-stage estimate is

RI(T) f dt yo(t) yo(t - T) + dt y1 (t) y*(t - . (144)

In particular,

iO) [f dt lY m(t)l + dt lyl(t) 2
1 fOT  x 2

= j dt x(t) 0(t) , (145)

where the overall weighting 0(t) of x2(t) is depicted in figure 17. As shown, the
overall weighting is very uneven, causing loss in stability. As P increases above 2,
the uneveness of the overall weighting (for q =.5) occurs only towards the edges of
the (0, T) interval, yielding a decrease of variance, since more data points tend to get
the same overall weighting, insofar as their effect upon the estimation of R1 (T) is
concerned. However, at the same time, the effect of fewer degrees of freedom in
estimation of R,(T), for T values near L2 , becomes more pronounced as P increases
and L, decreases; this is true even for the 50 percent overlap case being considered
here. Eventually, this effect dominates, and the variance increases with P.

0(t

312

314

I ._ _ _ _ _ t
01 T IT T

Figure 17. Overall Weighting of x2(t) for q = .5, P = 2, Rectangular wi(t)
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q = .75 25 Percent Overlap

For any value of P > 1, the overall weighting 0(t) is very jagged (as above), and
the jaggedness does not decrease or concentrate near the edges as P increases. This is
true for any overlap greater than 0 and less than 50 percent.

In summary, for rectangular temporal weighting, the smallest values for the
normalized quality ratio are realized by choosing q = 1, no overlap, and making L,
several times larger than L2. This conclusion about the ratio L2/L, is consistent with
those reached earlier.

Hanning Temporal Weighting

The temporal weighting and associated correlation for this case are given by
(116), (C-9), and (C-10):

t) I s2(-) for Iti -I

+c = - + cos + sinX ) for I < L

(146)

Evaluation of third-order correlation 43(r, gA) in (108) is rather tedious; the end
result is given in (F-l) and (F-2). The procedure and program for the evaluation of
the normalized quality ratio is given in appendix F.

The normalized quality ratio for Hanning lag weighting and BeT = 100 is plotted
in figure 18 for several values of the shift fraction q. When q = 1, no overlap, the
small values of the Hanning temporal weighting at its edges cannot be compensated
for, by any choice of L2/L,, and the variance remains at approximately twice the
ideal value. For 50 percent overlap of the Hanning temporal weighting, q = 1/2, the
situation is markedly improved, there being a value, L2/L1 = .4, at which the excess
variance is only 8 percent above ideal; this is reminiscent of the variance ratio for
the case of no quadratic smoothing in reference 9, tables 5-7. When q is decreased to
3/8 or 1/4 (62.5 and 75 percent overlap, respectively), virtually the ideal variance
reduction can be achieved by choosing L2 - L .

In figure 19, the shift fraction q is kept at 3/8, while BCT is taken at both 100 and
32. The smaller value of BT leads to a slightly larger loss in performance because of
more significant edge effects. However, even so, the normalized quality ratio does
reach a very desirable level only 4 percent above ideal when L ,%, 2L 1 .
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Figure 18. Normalized Quality-Ratio for Hanning Temporal Weighting
and Hanning Lag Weighting; B~T =100
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Figure 19. Normalized Quality-Ratio for Hanning Temporal Weighting
and Hanning Lag Weighting; q = 3/8
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Summary

The possibilities and performance of a generalized spectral analysis technique
employing temporal and lag weighting have been investigated in terms of the mean
and variance of the spectral estimate. The only assumption required about the
process under analysis, in so far as the mean is concerned, is that it be second-order
stationary over the observation interval. We then were able to extract a simple
expression for the effective window involving the temporal and lag windows.

The possibility of doing lag reshaping to achive desirable effective windows was
considered in detail and found to be reasonable for a wide variety of windows with
good side lobe behavior and decay rates. In particular, if rectangular temporal
weighting is employed, its inherent poor side lobe structure can be corrected via
proper lag weighting, in so far as the effective window is concerned. Strictly
speaking, the closest side lobe cannot be eliminated; however, all the other side
lobes can be suppressed.

The effect of temporal and lag weighting on the variance of the spectral estimate
was evaluated and compared with the ideal value for large BeT. For rectangular
temporal weighting, it was found that small values of L,/L, and no overlap led to
values of the normalized quality ratio virtually equal to the best
attainable by any spectral analysis technique. The comparison is made under the
constraint that the effective frequency resolution Be is maintained the same for all
techniques under consideration. On the other hand, if Hanning temporal weighting
is employed, overlapping must be used for maximum variance reduction and the
length ratio L2/L, ought to be of the order of unity.

Since Fianning temporal weighting requires multiplication of each and every data
segment (P pieces) and significant overlap (' 50 percent), whereas rectangular
temporal weighting requires no multiplication and no overlap, the latter approach is
a strong candidate for spectral analysis, particularly since excellent effective
windows (low side lobes and rapid decay) and virtually ideal variance reduction can
be achieved by proper lag weighting and choice of ratio L2/L. Investigation of
other cases than those evaluated here can be achieved by appropriate modification
of the program in appendix F. A major analytical task will be the evaluation of the
third-order correlation (108), if temporal weighting w,(t) is taken other than rec-
tangular or Hanning.
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Appendix A

Comparison of Two Bandwidth Measures

The effective bandwidth of narrowband window Wo(f) was defined in (1) as

B e= fdf WO(f) 2

e fa 2

faf W0(f) (A-I)

The half-power bandwidth, Bh, is defined as the solution of

W.(f ) 2
W o(fo }  2 (A-2)

where it is assumed that window Wo(f) is real, even about f,, and peaked at f. We

let W,(f) = Wo(f + fQ); thus We(f) is even about f = 0.

The inverse Fourier transform of lowpass window We(f) is called the weighting

W e(r) = fdf exp(i2rf) We(f)

We consider here the class of weightings given by

W e(Cr) a ak Cos (rkTIL e) for ITI < Le
(A-4)

and zero otherwise, where {ak} are real and non-negative. This class includes
rectangular, Hanning, Hamming, Blackman, and the optimal windows of Nuttall,
reference 19. The Fourier transform of (A-4) yields lowpass window

2L (-1) a k

(f) 2L f sin(27Lf) E2 k ;
e f IT e e kz.0 (2Lef) -k

2a 0  for n = 0
W n L

e L e I a n j for n 0 (A-5)

A table of bandwidths Be and Bh and their ratio is given below for the window in
(A-S). Although these bandwidths vary significantly for the different weightings,
their ratio is much more stable. In fact, for the last four weightings listed, the ratio
is constant within ± I percent. The weightings listed under C5, C3, CI are those
given in reference 19, figures 10, 11, 12; the notation means

A-i
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CS: continuous fifth derivative of weighting

C3: continuous third derivative of weighting

Cl: continuous first derivative of weighting (A6

Table A-i. Bandwidths for Various Weightings

Weighting BeL e BhLe Be/Bh

Rectangular 0.5000 0.6034' 0.8287
1-anning 1.3333 1.0000 1.3333

Hamming 1.2614 0.9109 1.3848
Blackman 1.6415 1.1494 1.4281

C5 2.2165 1.5371 1.4420
C3 2.0478 1.4139 1.4483
Cl 1.9544 1.3444 1.4537

A-2
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Appendix B

Some Lag Weighting and Lag Windowing Considerations
For Discrete-Time Processing

It is convenient here to define an equispaced unit-impulse train by the notation

6a(b) = 6(b - na) (B-I)
n

where the summation on n extends over _ o.

For discrete time sampling at spacing A, it has been observed in (30) that 6,(f)
has period l/At in f. Therefore lag window W2(f) could be confined to If I < (2A,)-I
with no loss in generality, in so far as its effects on 6 2(f) by means of (18) are
concerned. In fact, for a general lag window W,(f) specified arbitrarily, the
equivalent band limited lag window is

12 (f) = rect(Atf) [W2 (f) * 6 (f)]6 1M

1 t (B-2)

where we will utilize definitions

1 for lxi < 1/2

rect (x) sinc(x) = sin (7rx)

0 otherwise (B-3)

and where &denotes convolution. That is, W(f) is aliased into the band
IfI < (2A,)-', and only this band-limited portion is retained for *2(f).

A way to demonstrate this mathematically is to note that the only values of lag
weighting w2(r) that can affect k 2 (T) are the samples

w2 (qAt ) = fdf exp(i27fqAt ) W2 (f) (B-4)

The band-limited lag weighting function that passes through all these specified
values, for all q, is

2 = w2 (q At ) sinc(-- q '

qk- -(B-5)

with corresponding Fourier transform

B-I
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W2 (f) = At rect(Atf) E w2 (qAt) exp(-i2nfqAt) (B-6)
q

= At rect(At f) E exp(-i27TfqAt) fdu exp(i2nuqAt) W2(u)
q

= rect(Atf) fdu W2 (u) At E exp[-i2r(f - u)qAt]
q

= rect (A f du W2 (u) 61 (f - u)
e t tf

= rect(At f) W2 ) o 61(f)] (B-7)

Relation (B-4) indicates how an arbitrarily specified W2(f) fixes the lag weights at
the sample points. For the reverse problem, where sampled lag weights {w2(qA, 1)
are specified for all q, relation (B-6) gives an equivalent lag window, in particular
the band-limited spectral window, which results in the same estimates R,(T) and
62(f). Notice that W2(f) is not uniquely specified by samples {W2(qA,)}; however,
the band-limited W 2(0, which realizes weights {w2(qA,)} for all q, is unique and is
given by (B-6).

As a special case of the above, consider discrete frequency smoothing with
frequency spacing Af = (MA,)-', where MA, is of the order of 2L,; i.e., from (38),

W2 (f) A n W2n - , (B-8)

where we set W2 n = 0 for Inl > M/2 without loss of generality, in accordance with
the observation above (B-2). Then lag weights (B-4), given now by

W1 = W2  exp(i2nnq/M)
2 ( t MAt InI_<M/2 2n (B-9)

will equivalently accomplish the same purpose. This last relation can be
accomplished by an M-point FFT, where WZ.±/ 2 receive the same complex
exponential weighting in (B-9).

It should be noted that the discrete function w2(qA,) in (B-9) has period M in q;
this means that w2(qA, ) in (B-9) will increase in magnitude for M/2 < q < M. If k I
is nonzero for lqj > M/2, this lag weighting may cause a problem. One guaranteed
way to avoid the problem is to choose M/2 larger than the nonzero extent, N,, of
iq. Physically, this means that the frequency spacing &f = (MAt) -', used in

frequency smoothing (B-8), must be small enough so as not to miss any information
in 6 ,(f). Coarse frequency spacing gives spurious results for 62(f). (It will also yield
poor effective windows.)

B-2
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Since from (24), A Iq = 0 for q > N, where N n is the number of time samples per
segment, only a finite number of the general weights {w2(qA,)} in (B-4) affect R 2 q.
Thus in example (B-8), although (B-9) has period M in q, only the values for
[[ < N1 are relevant to the effect on R2q;more generally, the values yielded by (B-4)
for a general W2(f) are relevant only for jqj < N,, and only these need be evaluated
and retained if we choose to process via the lag domain.

Now let us consider the reverse problem, where lag weights {w2(qA,)} are
specified for all q, and we wish to determine some allowable lag windows W2(f) that
will realize the same estimates A 2(T) and 6 2(f), but which take advantage of the fact
that only w2(qA,) for IqI < N, must be realized. One obvious candidate is the band-
limited lag weighting version

Aw2 (T) = w2 (qAt ) sinc(- - q)
Iq[ <N1  \t (B-10)

notice the limitation on q employed. The corresponding lag window is

= At rect(Atf) j w2 (qAt) e- (B-Il)lql<N 1(BI)

A second candidate is

A A ) (B-12)

provided that M > 2N 1 -1; this provision guarantees non-overlap of the
displacements of N,2(T). Then

Wf 62 f 15 6 (f) = W2 6f M) (-t n (B-13)

where

1_ A /n /n

rect q<N w2 (qA ) exp(-i2rnq/M)

(B-14)

from (B-I I). Notice that (B-13) has the form of discrete frequency smoothing in
(B-8); (B-14) gives the area of each impulse needed in (B-13). Also notice from
(B-14) that all these areas are zero for Inl > M/2; thus we have a finite sequence to
apply in the frequency domain, which is equivalent to a specified finite set of lag
weights.

Equations (B-14) and (B-9) are complementary to each other. In fact, we can
derive (B-9) from (B-14) as follows: from (B-14),

W2n = ' rect W exp(-i2tnq/M) , (.
nM q(B-15)

B-3
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where

q w2 (qAt ) for Ili < N
w
q ) 0 otherwise

(B- 16)

Then

S exp(i2np/M) exp(i27rnp/M) I- rect(M)Z w exp(-i2nnq/M)Inj- M2 I~ en~2 pM 1.:n<_/2

W - rect(R) exp(i2nn(p- q)/M)

q q M lFLJI

- (Mq p-q p p (B-17)
q

where

1 for p = 0, +M, + 2M,

ip
0 otherwise

1 (M) =(B-18)

Now if M > 2N1-1 (as assumed above (B-13)), then

F W2n exp(i2vnp/M) = w2 (qAt) for Iql < NBI n I<_./2 (B]-19)

This is (B-9) for Iqj < N , which is the only range that affects 2q.

B.4
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Appendix C

Correlation +,(r) of a General Class of
Temporal Weightings

The class of temporal weightings of interest here is given by a sum of complex
exponentials:

W1(t) =F, ak exp(i2rkt/L 1 ) for ItI < L1 /2
k ('-l)

and zero otherwise. We assume that the coefficient sequence has conjugate sym-
metry

Sk =ak for all k

(C-2)

then w,(t) is real, and it follows that the (aperiodic) correlation

e 1 (1) = fdt wI(t) w1(t - T) (C-3)

is also real, in addition to being even about r = 0.

Substitution of (C-i) in (C-3) yields

L/2

= 2T) dt exp[i2Tkt/Ll - i21m(t -0/1,

km t-L1/2

for 0 < T < L (C-4)

This can be evaluated and then extended to r < 0 by the use of the even character of
+,(r); there follows

(L1 -ITI) 0 + 2 F lak2 cos(2RkT/L1)

2L I  1-k

Sm>k m-"Re (Ck a ) sin(27rmIIl/L 1)

for ITI L (C-5)

and zero otherwise. This is the general result for the correlation of weighting (C-I).

We now specialize (C-5) to the case of real symmetric coefficients in (C-I):

L real, k = ak (C-6-

C-1
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For all coefficients zero except for a, we have

W(t) = for It] < L1/2 (C7)

*1 (T) rL1 - Iti) 2i0 for ITI < L (C-8)

For all coefficients zero except for ao, a,, we have

Wl(t) a0 + 2aI cos(2vt/L1 ) for Itl < L 1/2 (C-9)

(T) (L, - ITI) a2 + 2c cos(2fT/L 1 )

LIi

+- al(2a 0 - cl) sin(2UiTil/L 1 ) for ITI < L (C-)

For all coefficients zero except for a, at , a2 , we have

Wl(t) = a0 + 2 a1 cos(21rt/L 1 ) + 2 a2 cos(4vt/L 1 ) for Itj < L 1/2

(C-ll)

(T (L - lITIc 2 + 2a 2 cos(2rT/L) + 2a 2 cos(47rT/L 1 )]

+ L, [2cl(6a 0 - 3aI - 4a 2 ) sin(27ITl/L1 )

-a2 (6a0 - 16a I + 3a2) sin(41ITI/L )

for ITI < L1  (C-12)

For all coefficients zero except for a, a I, a 2 , a 3, we have

W(t) = a0 + 2a I cos(2it/L I) + 2a2 cos(4wt/L I ) + 2a 3 cos(6wt/L )

for Iti ' L1 /2 , (C-13)

C-2
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a 2 + 2a 2 cos(2nT-/L) + 2ac± (4/L) + 2a2 cos(6rrn/Lj

+ 1  ra (12a 6a~ - 8a + 3a)sin(27TI-ri/L)
3 0 7r 1 0 1 2 3 1)

- 2L(3O0 - 80ac 1 5 +~a 48cb3) sjn(4nTI/L)

+ a 3 (20a 0 - 4a1+ 7a2- 10a 3 ) sin(67rj-n/L 1 )

for ITj < L1(C-14)

This last case includes all the weightings considered in reference 19, with the

identification of coefficients as14
a =k =.o a for k> 0

(C-IS)

Then we can express the temporal weighting as

W 1 ( W a k cos(21~kt/L 1  for It! L /2 (C-16)
kz>0

C-3/C-4
Reverse Blank
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Appendix D

Derivation of Variance of Spectral Estimate

Our starting point is (14). The integral on t is a Fourier transform of the product
in (13), and can therefore be expressed as a convolution:

Yp(f) X(f) [ W(f) exp i27 f( + ps (2 S )
fdu X(f - u) W1(u) exp (i2ru + PS)) ' (D-1)

where we used (46) and defined

X(f) f Sdt x(t) exp(-i2fft).~(D-2)

Although the relations to follow could be derived in the time domain, it is more
convenient to develop them in the frequency domain because of the frequent and
useful occurrence of delta functions.

X(f) is complex Gaussian for all f, since (D-2) is a linear transformation and we
have assumed x(t) to be a complex Gaussian process, for the variance calculation to
follow. Furthermore covariance

Av{X(f I ) X*(f 2)} = fSdt1 dt 2 x(t I ) x*(t 2 ) exp(-i2rflt I + i2 f 2 t 2 )

= Sfdtl dt2 R(t1 - t2 ) exp(-i2Tf t1 + i21Tf 2 t 2 )

=ff du dt2 R(u) exp(-i27f,(u + t 2) + i2 rf 2 t 2 )

= G(f) (fl " f2 (D-3)

upon use of (43) and (45). When x(t) is a single-sided (analytic) complex process,
there then follows for the fourth-order average, which will be needed later
(reference 23),

Av{X(f 1 ) X*(f 2 ) X(f 3 ) X*(f4)

G(f G(f)[6(f, f2) (f3  f + (f f4  f3 )]

(D4)

D-1
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(When x(t) is a real process, there would be a third term in addition. However, even
then, this term contributes only near f = 0; see reference 9, equations (A-4) - (A-8).)

Upon use of (D-1), (14) becomes*
A 1 ppI

Gl(f) -- f du dv X(f - u) X*(f - v)
P=0

Sl ( u ) W*(v) exp i27(u - v)(T + PS))

Then the average of the product of the first-stage spectral estimates is

A A 1 P-
Av(G 1 (f I ) G1 (f 2 )) = 2" 0 Jfq du dvi dv

X(f1 - u) X*(f - v) X(f2 - I1) X*Cf 2 - v) W1(u) Wl*(v) Wl( ) W;(v)

*exp(-i2T(u - v) + P.5) exp( i27r (P - v)(- + qS)
(T S) S)) (D-6)

Reference to (D-4) enables us to express the fourth-order average as

G(f1 - u) G(f2 - P)

(u - v) 6(11 - v) + 6 (f - f2 + v - (;) 6(f - f2 + - v)] (D-7)

Use of the first term of (D-7) in (D-6) yields

1 ffdu G(f 1  u) G(f 2 2
, d - 2 - J) wu)l iW1 ()I
psq=O

Sfdu G(f - u) l 1ll2 f d G f 2 - w) G)1 2

AA
= Av{GI(f 1 )} " AV{ (f2I } ' (D-8)

where we employed (45) in the last line. Moving this term to the left side of (D-6),
and using the second term of (D-7), we obtain, for the covariance of the first-stage
spectral estimates,

*For more generality, we allow temporal weight w, and window W, to be complex in this appendix.
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A A P- 1
Cov= 1 ffdu dv G(f- u) G(f I  v)

1 1 1 ju 2 8 2~a Gf8 f 1  I )W -8

P p,q=0

Wl(U) W*(v) WI(V + f f ) W(u + f " f ) exp(-i2(u -v) (p - q)S)

1 1 d 2 ~ 1 1 2 1

1=-- 1 dca dO G(a) G(O) Wl(f I  x WI(f I -)
Ppq=0

WP2£2O-c) (f 2 - a) exp(-i21(- a) (p - q)S)

1 P-1 f d I 2*(f2

2= 1P r0 jdaG( t) W 1( 1 - a) (f2 - a) exp (i2c(p - q)S)
P p, q=

1P-1 5..da G(a) Wl(f I  a) W*(f 2 -a) exp(U2apS)! 1 2

=ffda d8 G(a) G(8) W -(f - a) - 8) - 8) W - a)

[sinOrPS(a - 0)) 12
ILP sin7 - )3 ] (D-9)

Here we have used the identities

-1 1 exp(i2wr(p - q)u) = -1 - exp(i2rpu)
7 p,q=O p=i-P

- Fsin(rPu) 2
P sin(u (U) (D-1O)

For f, = f2, (D-9) checks with reference 9, equation (A-9); more generally, it is
equation D-2 of reference 9. We observe that if If2 - fII is greater than the effective
bandwidth of temporal window W,, (D-9) will be small since W,(f, - a) and
WI(f 2 - a) will then not overlap significantly on the a-scale. Also notice that
spectrum G is still left under the integral sign; i.e., there are no assumptions yet on
the character of the spectrum.

We are now prepared to consider the second-stage spectral estimate 6 2(f) as given
by (18):

.A A

G2(f) f df 1 G1 (f 1 ) W2 (f - fl) (DII)

Then

D-3
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A A1 [rA (fA1)(f) - Av IG2(f)l I dfIGtf) - Av (f) W2(f - f)

(D-12)

and therefore (recall that W 2 is real) the variance of the second-stage spectral
estimate is

Varf G 2 (f) - ffdf 1 df2 CoV 1 (f1), G1 (f 2 ) W2 (f - f 1 ) W2 (f - f 2 )

pvP (I - IP) fda d G(a) G(a) exp(i2Tr(a - 8)pS)Iy(f - a, f - 6)12
p=l-P

ff da dB G(a) G()1 Iy(f - , f - )1 QP(S( - (D-13)

where we used (D-9) and (D-10), interchanged integrals, and defined window
convolution function

y(x,y) -J fdu W2(u) W (X - u) WI(y - u)Y(X,) f 1 1(D-14)

Relation (D-13) is exact; it makes no presumption about the relative widths of the
spectrum G and the windows W,, W2. The compact expression (D-13) involves the
windows W I, W2 through the convolution function y, and involves the shift S and
number of pieces P through the periodic function Qp defined in (D-10).

The window convolution function y in (D-14) realizes its peak value at x = 0, y = 0,
and is rather small everywhere else, since the windows are virtually unimodal and
rather narrow. In fact, a special case is the diagonal slice

Y(x,x) = fdu W2 (u)IW 1 x - u)1 2 = 1W 1 x) 12 * W2 (x) = We(X)
(D-15)

by reference to (51). Generally, y(x, y) is substantially nonzero only in the region
Be, Be at the origin of x, y space.

We now employ the assumption discussed in connection with approximation
(103), namely, that spectrum G is relatively constant in the band of width Be about
the frequency f of interest. Then the major contribution to the variance, (D-13),
comes from the region near a = (- f in a, ( space. There follows the approximation
for the variance of the second-stage spectral estimate,
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Var G2 (f) " (f) -pl

" dad exp(i2r( -a)pS)ly(f - a, f - B)i2

G2 M - Y)1~ fd S''x~ 2
p=l-P (dx dy expi27r (y - x)pS) , y

2 M ffdx dy Iy(x, Y)I2 Q P(Sy - x)) , (D-16)

where we used (D-10) again.

We now simplify the double integral in (D-16); from the second line of (D-16) and
from (D-14),

D -ffdx dy exp(i2W(y- x)pS) du W2 (u) W (x - u) W(y - u)f2

~ff du dv WM W()i xexp(..i2TxpS) W1 (X - u) W 1(x - V)2

ff du dv W2(u) W2(v) I1X(pS. u - v)12  , (D-17)

where the complex ambiguity function of the temporal weight and window is
defined as

X1(,V) f fdf exp(i2rrfT) W 1(f + .-.) W-1(f -

f Jdt exp(-i2rvt) W1 ( T~) w*(

Now let v = u - v in (D-17), and obtain a single integral for D:

D = fdvIx1 S(pS v) 2  f du W2 (u) W2 (u - v)

=f dvl~x(pS, v)I 2 X2(0, v) , (D-19)

in terms of the ambiguity function X2 of the lag window and weight. Substitution of
(D-19) in the second line of (D-16) yields for the variance,

Var{• 2 (f)} = G (f) 1 - n dvI 1 (ps, v) 12 x2(o, v)
P"P P(D-20)

An alternative, and perhaps more useful form, to (D-20) is attained as follows;
the integral in (D-20) is expressible (by use of the definition (D-18) of the ambiguity
function) as

D-5
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dv[x"(pS, v)12  dt exp(-i2nvt) w (t)

= Jdt w2(t) fdv exp(-i2nrvt)1X1 (PS, v)12
2 (D-21)

Now we have the general result that

I 2jdv exp(-i2rvt) Ix1 (T, v) 2

f f dv exp(-i2ffvt)ffdt 1 dt 2 exp(-i27rv(t I - t 2 ))

f fdt 1 dt 2  Wi(t1 + 12) w*(tl - ) w;(t2 + -) wl (t + t2)

=fdt 1 w(t, + )2w( ti- w( ) 1 w(t + + -TT) wi(t + t-

f du w(u + T t W*(U + -T - t) W( + + t WiQ + -T+ t

- (t. T) (D-22)

This is a third-order correlation of temporal weighting w1 ; see the footnote to (9).
Thus (D-21) becomes

f dt w(t M (t, pS) ,D23

and the variance in (D-20) becomesP-1 2t0,t S

VarfG2 (f)} G2(f) F p - - fdt w2(t) p3 (t, pS) (D-24)

This "weighting-domain" version of the variance is very useful if third-order
correlation +3 can be evaluated in closed form.
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Appendix E

Computational Considerations for Non-Overlapping Segments

The curves in figure 15 for non-overlapping time segments are drawn over a

continuum of values of L2/L 1 . However, if we were given a value of TB,, all values

of L2/L 1 may not be allowed. To develop this point, suppose that we pick an integer

value for the number of pieces, P, and solve for LIB, = TBe/P according to (129).

From figures 5 and 6, this dictates the value for LBe, and hence a discrete value for

L2/L, is specified for each value of P. The number of pieces, P, can range from I to

Pmax' where

B T
B L (min) = P max 2c{ 1 } Be T (E-1)

from figure 5. For BeT >> 1, we have, for
1 L2 1

P=1, BL B T, BeL 2 I -i <<
eL1 e 2  2c{'w 2B e T

(E-2)

and for
1 L2

P = Pmax' BeLl =  B eL2  B T L2 > 2c{ l}B T >> 1

(E-3)

Thus a very wide range of discrete values of L2/L 1 is allowed when BT >> 1.

The problem with this approach is that when BL, is calculated, BeL, must be

solved for from the integral relation (52) (or approximately from figure 6). This

tedious procedure can be circumvented by specifying L2/Lj instead; if desired, we

could then use (5Z, to determine BeL,, and solve for P = BeT/(BeLI). However, P

will not necessarily turn out to be an integer for a given fixed T; thus only a set of

discrete values of L2/Lj are strictly legal. But if NQRpin (130) does not vary

radically with L2/L,, this is not a significant limitation. And since it is simpler, we

adopt it. In Appendix F, we cannot avoid the calculation of BeL, from a given BeLi .

E- 1/E-2
Reverse Blank
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Appendix F

Computational Considerations for Overlapping With
Hanning Temporal Weighting

The temporal weighting is given by (146). Substitution in (108) and evaluation of
the integral yields

44 k-I4(T- VO(7 I a 8) + = (-1) Vk sin(k(a + 8))3 9nL1 1 0k=l

for a+8. _r , (F-1)

where

L 1 L1

C a cos(=) Cos T cos(a) : cos

C 2 2 2 C2 + C4 4
V 0  8 a - C8 a a

VI = a + C(4c2 + 4C B 2

V=1 +1(2+2\+ 2 C2

V ~ ~ ~ + C V=

3 3 a B ' V4 -2 (F-2)

The procedure for the evaluation of the normalized quality ratio follows. We
specify a value for BeT and select a temporal weighting w,(t) and a lag weighting
w2(T). We then evaluate shape factor c{+} from (64) or table 2, and select a shift
fraction q = q { w, } according to (139). We then solve (141) for Pmax, and allow P to
take integer values in the range I < P 4 Pmax" BeL1 can then be evaluated from
4140) as

B T
eBLl I +T (P - 1)q (F-3)

,"" ' ,,,lu . P U c thcn sobc(52) in the form

.~ . ,. IX)
(F-4I

*h~~lc 4 %idpedrto



TR 6459

P 1  ( - Lifdx w2(Llx) LIO 3 (L1 x, pq L1) (F-5)
Q F P (1 l-P

where we let T = Llx and used (139). The quantity w,(Lmx) is a function of only
L,/L, while the remaining quantity in the integrand of (F-5) is independent of LI
and L,. Finally, we multiply (F-5) by BeT according to (110) in order to determine
the normalized quality ratio.

To reduce computation time, we take advantage of various properties of the
functions involved. First, since + 3 (T, 1j) is even in T and p (see (108)), and w, is even,
we express (F-5) as

4 -, dx w2(Llx ) L1,5(Llx, qk L
k=O P)/ 0 (F-6)

where

( k 1/2 for k = 0)1 for k > (F-7)

Also, from (F-1) and (F-2), we have normalized form

v v

for 0< a, 0< b, a + b < 1 , (F-8)

where now

C = cos(wa), C = cos(ib)

(F-9)

and {Vk}4 are still as given in (F-2).

Since L,+ 3(Lix, pqL,) in (F-6) is zero if x + qk > 1, we can limit the sum on k in
(F-6) to km = min (P - 1, 1/q), and we need to evaluate the integral on x in (F-6)
only up to Xm = min (L,/L, I - qk). The number of x intervals needed in (F-6his
about 16 with the Trapezoidal rule for integration. These features are incorporated
in the program listing below.

F-2
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II N'JSC, lEGI HINI CAL REPORT 6459. q 29 MFA 1"A , H. H. WU TTLL
I ,O -LtiO BIcoPe T
20Y Ci 1 -6+35-. 3F > HRANG JTEVDALJEHTh:li; TABlLE 2,

00 C1 = 628 Y~R F12P 01; Ci .ii
40C Pri= I + k.2 *01 *BetI' -Q01 Frio.t El:,. 141
IT c PRINT "Be T =" ;Bet , "q =q..i f1 =1; 01
6tC PR INT
7 0 CON Ti,T2,T3,T4
60c T2=2*P I
90 l T 3=1 3 -
100c T4=i-T2
110 FOR P=1 TO Pro,
120 c Bel 1=Bet , > 1+ .P -11' I -* Be Li; E0. 140
130; L21 1 FNL2-*1 1 -'.Be 11 , C I L2 Li; SO--LUTION COF EQ:. 5'2-
1403 T5=.5*PI*-L211,
150c KrfiMIN(P-1 ,1I Ol'
160 S=.5*FNInt (0, L21l 1,T5:)
170 FOR K1l TO I'm
180 S=S+(1I-tu'P)*FNIntt(0l.K, L21 1,T.,
190 NEXT K
200 0=4,,,P*S
210 PRINT P,L211,0*Bet
220 NEXT P
23--0 END
240
250 DEF FNL2l1(Bell,C1) SOLYE EQ.. 52 FOR L2*-'Li
260 Eps=Bull-.5-C1
270 X1=4/(3*Bel1)
2680 IF BEe I1(-'10 T HE N 6i= 603 246E*S 0R(Es'>- E p S(6+ 12E ps)
2.90 X 2 =.1*I. 03 7
300 FI=FNF(X1,BeilV
316 F2=FNF.X2,Bqli)
326 IF BS'kF2-F1)<.1E-6 THEN30
33S-0 T=X2
346 X2=(F2*X-FI*,X2: /F2-F1)
3s50 XI=T
366. F1=F2
370 COTO 310
360 R E TURPN <2
390 FNEIJD
406
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4 10 D EF FNF':.L21 1 , Be I11 RICHT SIDE -LEFT -IFE CF EQl. F-4
4 ") CON Ti
4 30 .rn I N ' 1 , L2I I
44CI T1.5*PI.L211
450 l= 16
460 C Del I:r'
470 F=. 5
4S FOP IK 1 TO N-1
49 0 F=lF+FNGkJF*Del
500l c NEXT K
51C) RETURN 2* Del*F-I--ell
5%2 0 FNEtAD

5 40 IiEF P-Gk'. 14 .2 "Lb PhI'LI+:; 2
550 COM T1,T ,T3,T4
560 P=T2*X
570 C=' 1-X.:*' 2*COS(P' #T3+T4*'.lUKE. P'-

5~~~ ~ ~ ~ e.?W2iI- S TI ,HINN IND4 LAl4 -WLEIlHTi., WL'J-
590E RETURN (12-G)' 2
600 FNENDJ
610
620 DEF FNInt.Qk ,L21 1, T5) INTEGRAL O3F EC?. P-5
630 Xrn=MIN(L21 1,1-Ok)
640 DeI =rX 16
650 S=.5*FNPhi3(0,Ok)
66-0 FOR J=1 TO 15
670 X=Del*.J
600 SaS 0+ CO0S (T5* x) '4*F t4P hi 3cX, Ok
6F90 NEXT J
700 RETURN DeJ)*8
710 FUEND
720
730 DEE FNPhi3>A,3' foFH3L*AL* ir Al.::0, P-=0: EO. F-8
740 IF A+B,.=1 THEN EETURU 0
750 Ab=PI*&A.B)
760 Ca=C.0S'PI*A)
770 Cb=COS':PI*IH
760 Ca2=Ca'"2
790 Cb2=Cb 2
60Ci0 =Ca2+Cb2
810 E V0=. 3715-,-S+4*rCk2*Cbi +C*a.22'+Cb.2 2
:320 V1 Ca*Cb* 4*'- 1.
8:3"0 V2= -. 25k. 5*St+C2*0b'2
8 40 V.3=C a*C b, 3
:350c S=vI S I N W ->I N, 2*Rlb +y±I?*R h. C' I I f,, 4 Fir
860c L I ph i 3= 4 ', 9 *P ) V YO P I -A Ft.:' + S'
870 RETURN Llphi:3
880 FNEND

F-4.
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